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Administrative

n A Website:cars.mit.edu

A Contact Emaildeepcars@mit.edu

A Required:
' A Create an account on the website.
A Follow the tutorial for each of the 2 projects.

A Recommended:
n A Ask questions
A Win competition!

Lex Fridman Benedikt Jenik William Angell Spencer Dodd Dan Brown
Instructor TA TA TA TA
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http://cars.mit.edu/
mailto:deepcars@mit.edu

Schedule

Mon, Jan 9 Introduction to Deep Learning and Self Driving Cars
Learning to Move: Reinforcement Learning for Motion Planning
Tue, Jan 10
DeepTraffic: Solving Traffic with Deep Reinforcement Learning
Learning to Drive: End-to-End Learning for the Full Driving Task
Wed, Jan 11
DeepTesla: End-to-End Learning from Human and Autopilot Driving
Thu, Jan 12 | Karl lagnemma: From Research to Reality: Testing Self-Driving Cars on Boston Public Roads
Fri, Jan 13 John Leonard: Mapping, Localization, and the Challenge of Autonomous Driving
Tue, Jan 17 Chris Gerdes: TBD
Wed, Jan 18 | Sertac Karaman: Past, Present, and Future of Motion Planning in a Complex World
Thu, Jan 19 Learning to Share: Driver State Sensing and Shared Autonomy
Eric Daimler: The Future of Artificial Intelligence Research and Development
Fri, Jan 20
Learning to Think: The Road Ahead for Human-Centered Artificial Intelligence

H B Massachusetts

Institute of
Technology
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DeepTraffic Solving Traffic with Deep Reinforcement Learning

Deeplraffic

Americans spend 8 billion hours stuck in traffic every year.
o Deep neural networks can help!

)
)
)

2 //<![CDATA[

3 // a few things don't have var in front of them - they update already
existing variables the game needs

4 lanesSide = 1; //1;

5 patchesAhead = 10; //13;

6 patchesBehind = @; //7;

7

8

9

)

trainIterations = 100000;

J
(. B

// begin from convnetjs example
var num_inputs = (lanesSide * 2 + 1) x (patchesAhead + patchesBehind);
11 var num_actions = 5;

o
o

e Q 12 var temporal_window = 3; //1 // amount of temporal memory. @ = agent lives
poect N U in-the-moment :)
80 mph D 13 var network_size = num_inputs * temporal_window + num_actions
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.18
79
:%l
.02
Y=
=01
9
' iizg‘l
ok oak o2k ogk o4k osk 06k o7k 08k ogk 1k
————————=
Value Function Approximating Neural Network:
Q! 1~ input(135) fc(10) relu(10)fc(5) regression(5)
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Types of machine learning:

internal state ';\r'eward
1 environment
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Standard supervised learning pipeline:

Training
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Evidence

Perceptron: Weighing the Evidence

0.7
0.6

14

1. weigh

output =

i 6
sum bias JOAS

Start

2.sumup 3. activate

if Zj w;z; < threshold
if »° jW;T; > threshold

SUOISIDa(

I H B Massachusetts
I I Institute of
Technology
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Perceptron: Implement a NAND Gate

A
.

Q=NOT(AANDB)

Truth Table
Input A InputB  Output Q

0 0 1
0 1 1
1 0 1
1 1 0

AUniversality:NAND gates arfinctionally complete
meaning we can build any logical function out of them.
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Perceptron: Implement a NAND Gate

(-2)*0 + (2)*0+3=3

(-2)*1 + (2)*1+3=1

0
0
1
1

Truth Table
Input A | Input B

0

1
0
1

Output Q

1

1
1
0

(-2)*0 + (2)*1+3=1

(-2)*1 + (2)*0+3=1

I H B Massachusetts
I I Institute of
Technology

Course 6.5094:
Deep Learning for Seliriving Cars fridman@mit.edu cars.mit.edu 2017
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Perceptron > NAND Gate

Both circuits can represent arbitrary logical functions:

e =D
D}—u } SuIm: 1y 4 xe

} carry bit: xiae

dziT G LISNDSLIWINZBY OANDdzA Gaé¢ Ol

1
sum: @y B g

% » carry bit: rqiaxs

)
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The Process of Learning

Small Change in WeiglsSmall Change in Outpur

small change in any weight (or bias)

causes a small change in the output

1w - A

{mtput—kﬂﬂuﬁmt
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The Process of Learning

Small Change in WeiglsSmall Change in Outpur

|

tput
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step function sigmoid function
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Z Z
Perceptron Neuron

Smoothness of activation function meatrise poutput is a linear function of thgwweights andnbias

Learning is the process of gradually adjusting the weights to achieve any gradual change in the out
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Combining Neurons into Layers

Feed Forward Neural Network

Recurrent Neural Network

- Have state memory
- Are hard to train

Course 6.5094: Lex Fridman: Website: January
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Task:Classify and Image of a Number

Input:

(28x28)

hidden |M3-' er

{rn = 15 newrons)

Network:

Input layer
(T84 neuwrons)
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Task:Classify and Image of a Number

forward pass Supervised Learning

» |og probabilities

(correct label is provided)

-1.2 | -0.36
. block of differentiable compute :
image (e.g. neural net) gradients

1.0 0

A

backward pass

DNR dzy R {0 NHzi K F2N.
y(z) = (0,0,0,0,0,0,1,0,0,0)%
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Philosophical Motivation for Reinforcement Learning

Takeaway from Supervised Learning:

Neural networks are great at memorization and not (yet)
great at reasoning.

Hope for Reinforcement Learning:

Brute-force propagation of outcomes to knowledge about
states and actions. This is a kind of brtit€ NOS a NB | a 2
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Agentand Environment

A At each step the agent:
A Executes action
A Receives observation (new state)
A Receives reward

AThe environment:
A Receives action
A Emits observation (new state

A Emits reward _
Environment oy,
Reward \\

|Action

/
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Reinforcement Learning

Reinforcement learning is a gene@lrpose framework for decisiemaking:

A An agent operates in an environmewttari Breakout

A An agent has the capacity st

A9l OK | OQtdAz2y Ay miurdSaeOSa GKS | 3
A Success is measured byeavard signal

A Goalis to select actions tmaximize future reward
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